208. Struktur des Hexarhodano-kobalt(II)-di-quecksilber(II)-Benzol-Komplexes von Rita Grønbaek und J. D. Dunitz

(27. VIII. 64)

Fügt man eine Lösung eines Co^{II} -Salzes zu einer mit überschüssigem Rhodanid versetzten Lösung eines Hg^{II} -Salzes, so fallen tiefblaue Kristalle des Doppelrhodanides $[CoHg(SCN)_4]$ aus. Wenn aber die Lösungen von Rhodanomercurat und eines Co^{II} -Salzes in Gegenwart von Benzol miteinander gemischt werden, erhält man anstelle des blauen einen rosafarbenen Niederschlag der Zusammensetzung $[CoHg_2(SCN)_6, C_6H_6]$ [1]¹). Benzol kann durch Toluol, *o-*, *m-* oder *p*-Xylol, Naphtalin und Anthracen ersetzt werden, nicht aber durch Cyclohexan oder Cyclohexen. Co^{II} kann durch Ni^{II} und Cd^{II} ersetzt werden, nicht aber durch Zn^{II} oder Cu^{II}. Auf Grund von Reflexions- und IR.-Spektren schlugen SCHWARZENBACH und Mitarb. [1] für das Co^{II}-Ion in der roten, benzolhaltigen Verbindung oktaedrische Koordination vor, mit sämtlichen Rhodangruppen in Brückenstellung zwischen Co und Hg, wobei jedes Hg^{II}-Ion nur 3 Koordinationspartner hätte. Es wurde angenommen, dass die aromatischen Kohlenwasserstoff-Molekeln je zwischen zwei Hg^{II}-Ionen liegen und so als vierter Ligand dienen.

FRITZ & MANCHOT [2] haben beobachtet, dass die charakteristischen Benzolfrequenzen bei 1479, 1035 und 701 cm⁻¹ nur leicht verschoben im IR.-Spektrum der benzolhaltigen Komplexe auftreten, was auf eine nur schwache Komplexbildung hinweisen würde. Auf Grund von Auswahlregelbetrachtungen schlugen diese Autoren vor, dass das komplexgebundene Benzol keine D_{6h} - sondern nur D_{8d} -Symmetrie besitze.

Es schien uns zweckmässig, die Kristallstruktur der roten Verbindung $[CoHg_2(SCN)_6, C_6H_6]$ durch RÖNTGEN-Strukturanalyse zu untersuchen, um Gewissheit über die strukturellen Verhältnisse zu schaffen. Unsere Resultate werden in der vorliegenden Arbeit beschrieben. Sie zeigen, dass, obwohl der Strukturvorschlag von SCHWARZENBACH [1] im wesentlichen zutrifft, die Struktur eigentlich in viel komplizierterer Art aufgebaut ist. Insbesondere hat jedes Hg^{II}-Ion nicht drei, sondern vier Schwefel-Liganden, wovon zwei einem zweiten Hg^{II}-Ion koordiniert sind, so dass

Vierringe entstehen. Dadurch bilden die [CoHg₂(SCN)₆]-Einheiten zweidimensionale Schichten, die durch Benzolmolekeln voneinander getrennt sind. Jedes Benzol ist zwar an ein Hg-Paar gebunden, doch ist die Koordination der Hg^{II}-Ionen von keiner einfachen Art.

Kristallographische Daten. Hexarhodano-kobalt(II)-di-quecksilber(II)-Benzol-Komplex, CoHg₂(SCN)₆, C₆H₆, Molekulargewicht 886,72. Triklin, a = 7,59 Å, b = 8,37 Å, c = 8,87 Å, $\alpha = 98,31^{\circ}$, $\beta = 101,01^{\circ}$, $\gamma = 95,50^{\circ}$, U = 542,3 Å³, $D_m = 2,65$, Z = 1, $D_x = 2,71$. Raumgruppe, $P\bar{I}(C_i)$ auf Grund der Strukturanalyse.

¹) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, S. 1897.

Die angegebenen Gitterkonstanten weichen etwas von früher berichteten Werten [1] ab. Sie wurden aus Messungen auf 30°-Präzessions-Aufnahmen (MoK α -Strahlung, $\lambda = 0,7107$ Å) zusammen mit direkter Messung des γ -Winkels bestimmt. Die Achsenlängen haben Fehlergrenzen von etwa 0,5%, die Winkel von etwa 0,25°.

Experimentelles. – Die Kristalle wurden uns freundlicherweise von Herrn Prof. SCHWARZEN-BACH zur Verfügung gestellt; sie zeigten nach 3 Jahren noch keinerlei Zeichen von Zersetzung. Für die Intensitätsmessungen wurden ausschliesslich 30°-Präzessions-Aufnahmen (MoK α -Strahlung) der 0kl, h0l und hk0 Schichten von einem Kristall mit den Dimensionen $0,13 \times 0,06 \times 0,11$ mm verwendet. Die Intensitäten wurden auf einem Mikrodensitometer gemessen. Absorptionskorrekturen wurden wegen der etwas unregelmässigen äusseren Form des Kristalles nicht angebracht, was sich in Anbetracht des relativ hohen Absorptionskoeffizienten (μ (Mo $K\alpha$) = 170 cm⁻¹) auf die Genauigkeit der erhaltenen Resultate auswirken muss.

Strukturanalyse. Der Ursprung des Koordinatensystems darf am Mittelpunkt zwischen zwei Hg-Atomen angenommen werden. Wenn die Raumgruppe $P\bar{1}$ ist, so muss dieser Ursprung oder eine der alternativen speziellen Punktlagen (1/2, 0, 0, usw.) mit dem Co-Atom besetzt werden; dagegen ist das Co-Atom in der Raumgruppe P1 auf keine spezielle Lage beschränkt.

Ungefähre Werte der x- und y-Koordinaten für die Hg-Atome bezüglich des willkürlich gewählten Ursprungs konnten direkt aus der Intensitätsverteilung der hk0-Reflexe abgeleitet werden. Die erste mit den entsprechenden Vorzeichen berechnete Elektronendichtesynthese der (001)-Projektion muss notwendig zentrosymmetrisch sein. Sie zeigte ein starkes Maximum am Ursprung (identifiziert als Co) sowie sechs kleinere Maxima, die als S-Atome identifiziert wurden. Dadurch ist die Raumgruppe als $P\bar{1}$ festgelegt. Ähnliche Betrachtungen bezüglich der 0kl-Reflexe bestätigten diese Feststellung und ergaben ausserdem die z-Koordinaten der schwereren Atome.

Elektronendichtesynthesen, welche nun auf Grund der Beiträge der Hg-, Co- und S-Atome berechnet wurden, zeigten die Lagen der N- und C-Atome der Rhodanid-Gruppen und ergaben ausserdem etwas verschwommene Anzeichen für die Anwesenheit des Benzol-Ringes mit seinem Zentrum an der speziellen Lage 1/2, 0, 1/2.

Eine Reihe von je vier Differenzsynthesen für alle drei Projektionen wurde nun durchgerechnet unter Einstellung der Lage- und isotropen Temperaturfaktorparameter aller Atome ausser denjenigen des Benzols. Am Ende dieser Verfeinerungsstufe lagen die *R*-Faktoren (ohne Einschluss der Beiträge der Atome des Benzols) im Bereich 0,10–0,15 für die drei Gruppen von Reflexen. Die Lagen der Ring-Atome blieben noch ein wenig ungewiss, obwohl die mittlere Ebene des Ringes aus den Differenzsynthesen festgestellt werden könnte.

Es wurde nun klar, dass eine weitere Verbesserung nur durch Einführung anisotroper Temperaturfaktorparameter, wenigstens für die schweren Hg-Atome, erzielt werden könnte. Da unser Rechenprogramm für Strukturfaktorrechnungen damals keine Anisotropie berücksichtigte, wurde das Hg-Atom als zwei Halb-Atome betrachtet, die auseinander gezogen wurden, um die gewünschte Einwirkung auf die Strukturfaktoren zu erhalten. Eine bedeutende Verbesserung in der Übereinstimmung zwischen F_o und F_c erfolgte, und die anschliessende Differenzsynthese der (100)-Projektion zeigte einen viel schöner aufgelösten Benzol-Ring (Figur 1) als die früheren Synthesen. Einschluss der zusätzlichen C-Atome in die Strukturfaktorrechnung ergab dann eine noch bessere Übereinstimmung. Der Ablauf der Verfeinerung ist in Tabelle 1 dargestellt. Die beobachteten F_o - und berechneten F_e -Werte sind in Tabelle 2 wiedergegeben, wobei die F_e -Werte auf Grund der Koordinaten und Temperaturfaktoren der Tabelle 3 mit den gebräuchlichen Atom-

Fig. 1. Differenz-Synthese der (100)-Projektion.

Die Beiträge sämtlicher Atome ausser denjenigen der Benzolmolekel wurde in F_c eingeschlossen. In der restlichen Dichte können die Atome der Benzol-Molekel erkannt werden.

formfaktoren [3] berechnet wurden. Wasserstoffatome wurden nicht in die Rechnung eingeschlossen.

Die Standardabweichungen der Atom-Koordinaten wurden nach COCHRAN [4] geschätzt. Sie betragen etwa 0,002 Å für Hg, 0,02 Å für S, 0,05 Å für N und 0,06 Å für C.

	R_{hk0} (%)	R_{0kl} (%)	R_{h0l} (%)
Isotropes Hg, kein Benzolbeitrag	11,40 9,38	13,46 8.43	13,60 11.06
Anisotropes Hg, Benzol eingegeben	8,58	7,23	7,6 6

Tabelle 1. Zusammenstellung der Werte des R-Faktors in verschiedenen Stadien der Verfeinerung

HELVETICA CHIMICA ACTA

Tabelle 2. Gemessene F_{o} - und berechnete F_{e} -Werte

н	ĸ	L	FCBS	FCALC	5	з о	6604	- 6791	2	0 10	1677 - 1902	8	0 6	838 1259
0	1	0	12428 -1	3377	5	40 50	6995 3622	7579 ~ 3709	3	0 -11	1435 1873 559 * - 588	9	0 - 5	2199 2212
ŏ	3	ŏ	10901 -	9996	5	6 O	4758	5436	3	0 - 9	2124 - 2186 2274 - 2088	9	0 - 4	1808 1700 1864 - 1990
Ö	5	Ő	2769 -	2532	ş .	éŏ	2237	2196	3	0 - 7	3672 3780	ģ	0 - 2	1770 - 2034
0	67	0	3373	3133	6 -1	9 0	1065*	2905 - 1464	3	0 - 5	4082 - 3773	9	0 0	2423 2066
ŏ	Ś	ŏ	2982 -	3068	6 -	B 0	2982	3461	3	0 - 4	559* - 630	9	0 1	559× - 770
ö	10	0	2521 -	2627	6 -	6 Ö	1065*	1435	3	0 - 2	4417 4057	9	0 3	1174 1165
0	-11	0	3977 2237 -	3946 2675	6 -	5 U	1065*	- 007	3	ŏŌ	2124 - 1533	10	0 - 5	1864 - 1610
į	-10	ő	2769	2630	6 -	3 0	3799	3520	3	0 1	11929 12358 3858 3214	10	0 - 4	2162 2153
i	- 6	ő	2769	2133	ě –	ŏ	7670	7909	3	0 3	6635 - 6611 559# 072	10	0 - 2	559* 729 1714 - 2091
1	- 7	0	1065* 3622 -	186	6	iŏ	6036	- /06/ 64 2 4	ž	õ 5	3336 3184	iŏ	ō ġ	559* - 472
1	- 5	0	7776	7814	6	20	5006 ·	- 5655	3	ŏ Ž	559* ~ 720	10	0 1	10/1 1/01
į	- 3	ŏ	15979 1	8000	é	ŏ	3373 .	- 3379	3	0 8	1416 - 1572 1491 1574	٥	0 10	728× - 1289
ł	- 1	ő	14346 1	6326	6	5 0	2414	1501	3	0 10	1621 1128	0		728× 417 4858 4362
1	0	0	10653 -1	1197	6 7 - 1	70	1065* -	- 088	4	0 -10	2516 2549	ŏ	ŏ 2	10930 -11041
1	2	õ	6462 -	5966	7 -	3 Ö	1065*	- 1635	4	0 - 9	2/56 2960 1547 - 1852	ő	0 4	12946 12692
į.	4	ŏ	2982	2479	1 - 0	ŏ	1065*	1563	4	0 - 7	1435 - 1067 4343 4129	0	0 5	2040 - 926
ί	2	0	5575	5348	i	i õ	3551	3185	4	0 - 5	7120 6889	0	0 7 D B	728 ~ 094 5246 5639
1	7 8	0	63 56 -	6456 6863	7 -	3020	2663 · 3870	- 2621	4	0 - 3	6225 - 6164	ŏ	0 9	4372 4289
1	9	õ	3728 -	3809	Ž -	1 0	4687 .	- 4732	4	0 - 1	14035 14718	0	1 -10	728 1134
i	11	ö	2521 -	2998	ź	ŏ	2379 .	- 2346	4	0 0	559× - 003 8182 - 8786	0	1 - 9	4177 - 4055
2	-11	0	3622 1065 + -	3187 1140	4	2 0	1065 × ·	- 1784	4	0 2	6878 6848	0	1 - 7	3400 3269 6946 7122
2	- 9	0	1065#	321	? '		2876 10654	2602	4	0 4	1435 671	ŏ	1 - 5	5513 - 4943
2	- 7	ŏ	2237 -	1624	ź	ś ŏ	1065*	- 113	4	05	1435 - 1398 559+ 070	0	1 - 4	3910 - 9270 3910 - 3943
2	- 5	ç	3266 -	3220	8 - 1	áŏ	2237	1785	4	0 7	3094 3350	0	1 - 2	9497 9263 2186 - 1848
2	- 4	0	13351 1-	4358 5460	8 - 6	70	1065*	- 271	4	0 9	559* - 858	ŏ	1 10	728 2155
2	- 2	0	8699	8466	8 -	5 0	2627	2023	3	0 -10	2087 - 2120	Ő	1 1	4712 4572
ź	ō	ő	11860 1	0026	8 -	i õ	2627	2654	ş	0 - 9	559* - 493 1914 - 1942	0	1 2	9934 10080 3813 - 3419
2	2	0 0	1597 - 2379 -	2359	8 - 3	2 D 1 Q	4119	4301	ş	0 - 7	2572 2598	0	1 4	8477 – 8332 728≭ / 681
2	3	0	6214 6107 -	5723 6431	8 0	0	2237 .	- 2293	5	0 - 5	3206 - 2872	ŏ	i é	6946 7081
2	Ś	õ	6356	6224	8 i	ž	1065* -	- 332	5	0 - 4	4436 3899 8257 8290	ů ů	1 8	3692 - 3726
2	ž	ŏ	8913	9663	8 /	4 0	1065*	900	5	0 - 2	4063 - 3523	0 0	2 -11	7284 - 843 7284 003
2	9	0	4509 -	5874 4951	8 :	5 0	1065 *	205	5	ŏ ŏ	7810 7758	ġ	2 -10	728# - 300
2	10	0	2769 -	3232 2994		n 1	4660	4337	25	0 2	3578 - 3650	ŏ	2 - 8	5295 5666
3	-11	ŏ	1065* -	1331	ŏ	2	10494 -	-10942	5	0 3	3578 - 3208 3877 3410	0	2 - 6	4129 - 3875
3	- 9	ŏ	1065¥	2437	0 0		11333	11979	ŝ	0 5	3038 3168	0	2 - 5	10566 10449 9230 8614
3	- 8	0	7173	1818	0 0	05	6225	- 871	5	0 7	1621 - 1346	õ	2 - 3	7384 - 6538
3	- 6	0	3479 8806	3879 9162	0	2	559* -	- 247	3	0 9	1603 1771	ŏ	2 - 1	9691 9652
ŝ	- 4	ŏ	9410 -	9204	ě ě	9	3411	3507	6	0 - 10	1658 2115 559× ~ 275	0	2 10 2 0	728# 068 10906 12429
3	- 2	ŏ	4332 -	3542	ŏ	5 11	559*	165	6	0 - 8	2646 - 2705 559# 630	0	2 1	2113 1479 9594 - 9819
3	- 1	0	6143 1420 -	5439 1627	1 0	0 12 0 -11	1864	1748	ě	ğ - é	3597 3502	ŏ	2 3	4858 4607
3	1	0	2095 4829	1040	1 1	2 -10	1714	1850	ő	0 - 4	4920 - 4611	ŏ	2 5	728 - 659
ŝ	3	Ō	5255 -	5081	i i	i ~ §	559+	- 742	6	0 - 3	2907 - 2876 6673 6806	0	2 7	4809 - 4838 4105 4228
3	5	ŏ	3622 -	3728	- j - j	5 - 6	4734	4445	6	0 - 1	4697 4865	0	28	3813 3590 728# 033
3	7	ő	5397 -	5629) - 5) - 4	6840	- 6532	ę	0 1	2945 - 2644	0	3 -11	"1797 2410
3	8	0	4758 -	5163 2815			6337	6314 19497	é	õ ĝ	1733 970	ŏ	3 - 9	3084 - 3461
3	10	0	2769	2281		į - į	5219 -	4351	6	0 5	1174 - 825	0	3 - 7	5100 5422
4	- 2	ŏ	2876 -	3289	i è	อ้ ไ	10606	11150	6	0 6	559* 614 1174 1373	0	3 - 6	281/ 1814 6946 - 6418
4	- 7	0	4545 -	4624		j 2 3	5163	- 4886	6	0 8	559* - 443	0	3 - 4	5853 - 5240
4	- 6	0	6711 - 6249 - 6	7105 6253		0 4	4958	- 4674 3938	ź	0 - 8	1901 2387	ŏ	3 - 2	10760 10757
4	- 4	0	9197 1 5823 -	0003 5027	1	6	5219	5394	4	0 - 6	1621 - 1853	ő	3 0	9351 - 9883
4	- ź	ō	5255	4526	ii	Ď Ś	2684 -	- 2804	7	0 - 5	1882 1581	0	3 1	9303 10115 8817 9137
4	- 0	ŏ	2095 -	168		0 9 0 10	2479	2556	Ż	0 - 3	1789 1461 4082 - 4528	0	3 3	7262 - 6785
4	2	0	2876 1775 -	2505	1 (559 * 1864 -	472	ź	0 - 1	1379 1228	ŏ	3 5	4129 4090
4	34	0	10155	9957 6870	2	o -io	559#	- 260 3508	ź	ŏ 1	559× 090	õ	3 1	728* - 1706
4	ş	ō	4545	4759	2	- 8	559+ -	- 523		0 2	1565 1130	0	39	1627 - 3120
4	2	0	4367	4342	2 0	- / - 6	1957	- 1759	7	0 4	2963 2649 1379 659	0	4 -10	1627 1948 4420 4840
4	8	0	1065* - 2521	492 2558	2 0	j - 5 - 4	4175 5312	4470 4853	ź	ŏģ	1360 - 416	ă	4 - 6	1651 1394
ş	-10	Ó	2840 -	2339	2	j - j	5778	- 5321	8	0 - 7	2385 2424	0	4 - 6	1724 755
ş	- 8	ŏ	4580 -	4656	2	5 - 1	8555	8742	8 8	0 ~ 6 0 ~ 5	2497 2389 559* - 215	0 0	4 2 4	8477 8723 8039 7326
5	- 6	0	2982 -	2613	2 0	J 0 J 1	14874 -	-16161	8	0 - 4	1770 - 1598	0	4 - 3	5003 - 4508 3424 - 2856
5	- 5	0	5184 5219 -	4453	2 0	2	3690 · 7250	- 3439 7466	8	0 - 2	4231 4513	ŏ	4 - 1	14136 14771
ş	- 3 - 2	0	3622 1775	3337 1523	2	1 4 1 5	2348 3150 ·	2031	8	ŏ ō	2143 - 2433	ŏ	4 1	6436 - 6646
ş	- 1	ó	2876 - 8344	1197 8164	2	5	3616	3628	8	0 2	3429 3288	0	4 2	8963 9581
5	1	ŏ	4261 -	4185	2 0	5 6	2460	2526	8	0 3	559* - 738 559* - 367	0	44	5149 5109 1724 - 1318
5	Z	0	5023	5351	2 (9	559 * -	- 651	8	ōŚ	1062 608	ŏ	4 6	1918 - 1349

Volumen 47, 1	Fasciculus 7 ((1964) - No.	208
---------------	----------------	--------------	-----

	x	у	Z	B(hk0)	B(0kl)	B(h0l)
Co	0,0000	0,0000	0,0000	1,50 Å ²	1,15 Ų	2,25 Ų
Hg	,4288	,4559	-,2423	1,62	1,60	3,00
S(1)	,4110	,1617	-,3305	2,00	2,35	2,90
S(2)	,4376	,7094	,3445	2,20	2,90	3,40
S(3)	,2545	,4872	-,0007	1,80	2,47	2,80
N(1)	,1340	,0745	-,1785	2,20	3,20	3,55
N(2)	,7785	,8700	-,1612	2,50	1,55	3,10
N(3)	,1385	,7955	,0040	0,70	1,10	4,50
C(1)	,2535	,1105	-,2440	3,65	2,60	4,00
C(2)	,6485	,8032	-,2330	1.05	3,05	3,25
C(3)	,1830	,6670	,0035	2,00	2,00	2,00
C(4)	-,0718	,5420	-,3600	4,00	4,00	4,00
C(5)	-,0380	,3830	-,4080	4,00	4,00	4,00
C(6)	,0265	,3420	,55 55	4,00	4,00	4,00

Tabelle 3. Koordinaten und Temperaturfaktorparameter der Atome

Die Anisotropie des Hg-Atoms wurde berücksichtigt durch Annahme von zwei Atomen mit je halbem Gewicht an

hk0,	$x \pm 0,0163$,	$y~\pm~0,0020$	
0kl,		$y \pm 0,0041,$	$z\pm$ 0,0177
h01,	$x \pm 0,0060$		$z \pm 0,0152$

Beschreibung der Struktur. Die wichtigsten interatomaren Abstände und Winkel sind in Tabelle 4 wiedergegeben. Die Figuren 2, 3 und 4 zeigen die Kristallstruktur in Projektion auf die (100)-, (010)- und (001)-Ebenen.

Das Co-Atom ist von sechs N-Atomen in einer fast oktaedrischen Anordnung umgeben; die N-Co-N-Winkel sind alle nahe bei 90°, und die Co-N-Abstände weichen nicht mehr als eine Standardabweichung von ihrem Mittelwert ab. Dieser mittlere Abstand

Abstand	(Å)	Winkel	
Co-N(1)	2,17	N(1)CoN(2)	87°
Co-N(2)	2,08	N(1)-Co-N(3)	90°
Co-N(3)	2,09	N(2)-Co- $N(3)$	88°
N(1) - C(1)	1,20	Co-N(1)-C(1)	160°
N(2) - C(2)	1,11	Co-N(2)-C(2)	171°
N(3) - C(3)	1,16	Co-N(3)-C(3)	167°
C(1) - S(1)	1,60	N(1)-C(1)-S(1)	179°
C(2) - S(2)	1,76	N(2)-C(2)-S(2)	176°
C(3) - S(3)	1,64	N(3)-C(3)-S(3)	177°
S(1)-Hg	2,455	C(1)-S(1)-Hg	9 6°
S(2)-Hg	2,424	C(2)-S(2)-Hg	98°
S(3)-Hg'	2,719	C(3)-S(3)-Hg	105°
S(3)-Hg	2,855	C(3)-S(3)-Hg'	104°
Hg-C(5)	3,52	S(1)-Hg-S(2)	140°
Hg-C(6)	3,66	S(3)-Hg-S(3')	83°
Hg-C(4)	4,15	S(1)-Hg-S(3)	106°
		S(1)-Hg-S(3')	101°
S(1)-S(2')	3,57	S(2)-Hg-S(3)	109°
S(1)-S(1')	4,13	S(2)-Hg-S(3')	102°

Tabelle 4. Interatomare Abstände und Winkel

von 2,11 Å ist bedeutend länger als der Co-N-Abstand von 1,92 Å in der tetraedrisch koordinierten blauen Verbindung $[CoHg(SCN)_4]$ [5].

Obwohl die Stöchiometrie einem Verhältnis von 3 S: 1 Hg entspricht, ist jedes Hg-Atom nicht mit drei, sondern mit vier S-Atomen verknüpft, wovon je zwei mit einem anderen Hg-Atom geteilt werden. Die Abstände von Hg zu diesen Brückenatomen (Hg-S; 2,72; 2,86 Å) sind bedeutend länger als diejenigen zu den andern zwei S

Fig. 2. Darstellung der Struktur in der (100)-Projektion

 $(Hg-S; 2,42; 2,46 Å. Vgl. Hg-S, 2,56 Å in [CoHg(SCN)_4])$. Betrachten wir lediglich die zwei nächsten Nachbarn, so finden wir 2-Koordination für Hg¹¹ mit einem S-Hg-S-Winkel von 140°. Die zwei zusätzlichen Brückenatome vervollständigen eine sehr verzerrte tetraedrische Koordination um Hg, deren Symmetrie nicht höher als mm2 (C_{2v}) sein kann; die zwei extremen Winkel sind 140° (ungeteilte S) und 83° (geteilte S). Wenn wir die Abweichung von der Linearität der zwei kurzen Hg-S-Bindungen vernachlässigen, können wir auch die Anordnung der S-Liganden als verzerrt oktaedrisch beschreiben, wobei zwei *cis*-Lagen nicht besetzt sind. In den Richtungen der zwei fehlenden Liganden befinden sich zwei durch die [100]-Translation verwandte Benzol-Molekeln. Eine ist mehr als 4 Å vom betreffenden Hg-Atom entfernt, dagegen haben zwei C-Atome der anderen Benzol-Molekel Abstände von ungefähr 3,6 Å vom Hg. Die zwei zentrosymmetrisch verwandten C-Atome sind ebenfalls 3,6 Å von einem andern Hg-Atom entfernt.

Da man keinen theoretisch oder experimentell begründeten Wert für den Kontakt-Radius von Hg^{II} kennt, ist es schwer zu sagen, in welchem Masse die Hg ... C-Abstände von 3,6 Å einer bindenden Wechselwirkung entsprechen. In dieser Hinsicht ist es interessant, die Hg-Koordination mit derjenigen in kristallinem HgCl₂ [6] zu ver-

Fig. 3. Darstellung der Struktur in der (010)-Projektion

gleichen. In dieser Verbindung hat jedes Hg-Atom zwei nächste Nachbarn (2,25 Å) mit linearer Cl-Hg-Cl-Anordnung; vier weitere Cl-Nachbarn ($2 \times 3,34$ Å, $2 \times 3,63$ Å) vervollkommnen eine sehr verzerrte oktaedrische Koordination. Der längste dieser Abstände ist fast gleich der hier für Hg ... C gefundenen Entfernung, und die Kontakt-Radii von C und Cl sind ebenfalls gleich (1,80 Å) [7]. Wir sehen also, dass die Bindung zwischen Hg und den Benzol-Ringen ungefähr gleich stark sein könnte wie diejenigen zwischen Hg und den am schwächsten gebundenen Cl-Atomen in HgCl₂. Auf jeden Fall scheint es vernünftig, das Benzol als durch schwache anziehende Kräfte gebunden zu betrachten und nicht durch abstossende (etwa wie bei einer Clathratverbindung). Dies steht im Einklang mit der Tatsache, dass die entsprechende benzol-freie Struktur [CoHg₂(SCN)₆] nicht existenzfähig zu sein scheint.

Der Kristall ist aus Schichten der Zusammensetzung $[CoHg_2(SCN)_6]$ aufgebaut, die durch die Benzol-Molekeln getrennt sind. Die Struktur einer solchen Schicht ist aus Figur 4 ersichtlich. Die Packung der durch Benzol-Molekeln getrennten Schichten sieht man am besten in Figur 3. Eine solche Struktur kann sicherlich nur dann stabil sein, wenn Bindungskräfte zwischen dem Benzol und den Hg-Atomen der $[CoHg_2(SCN)_6]$ -Schichten wirksam sind. Diese Bindungen sind aber nur schwach, wie die grossen Hg ... C-Abstände zeigen. Die durch Polarisation des Benzols durch die Hg²⁺-Ionen induzierten Kräfte würden wahrscheinlich für den Zusammenhalt der Schichten genügen, und da aliphatische

Fig. 4. Darstellung der Struktur in der (001)-Projektion

Ringe viel weniger polarisierbar sind, wird es begreiflich, dass man solche nicht einbauen kann. Zwischen den Schichten ist weiterhin noch Platz für ausgedehntere aromatische Systeme, was die Tatsache verständlich macht, dass auch Naphtalin und Anthracen analoge rote Verbindungen bilden wie das Benzol. Die Addukte mit Naphtalin und Anthracen sind viel weniger stabil als die Benzolverbindung und scheinen nicht stöchiometrisch zusammengesetzt zu sein. Wir danken Herrn Prof. Dr. G. SCHWARZENBACH, der uns die Kristalle zur Verfügung gestellt hat, auch für die wertvollen Diskussionen.

Für die Ausführung dieser Arbeit standen Mittel des Schweizerischen Nationalfonds zur Förderung der Wissenschaftlichen Forschung zur Verfügung.

SUMMARY

The crystal structure of the pink complex of benzene with hexa-thiocyanato-cobalt(II)-dimercury(II), $[CoHg_2(SCN)_6, C_6H_6]$, has been determined by X-ray analysis. Layers of the composition $CoHg_2(SCN)_6$ are separated by benzene molecules. The Co^{II} ions are coordinated octahedrally by N, the Hg^{II} ions by four S atoms in a very distorted tetrahedral arrangement in which two of the S atoms form mercury bridges,

Each benzene molecule lies between two Hg atoms, the shortest Hg–C distances being about 3.6 Å. The stability of the complex is discussed in terms of polarization binding between benzene and Hg^{II}.

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich

LITERATURVERZEICHNIS

- [1] R. BAUR, M. SCHELLENBERG & G. SCHWARZENBACH, Helv. 45, 775 (1962).
- [2] H. P. FRITZ & J. MANCHOT, Chem. Ber. 96, 1891 (1963).
- [3] «International Tables for X-ray Crystallography». Vol. III. Kynoch Press, Birmingham 1962.
- [4] W. COCHRAN, Acta Crystallogr. 4, 81 (1951).
- [5] J. W. JEFFERY, Acta Crystallogr. 16, A66 (1963).
- [6] H. BRAEKKEN & W. SCHOLTEN, Z. Kristallogr. 89, 448 (1934); siehe auch A. F. WELLS, «Structural Inorganic Chemistry», Dritte Auflage, Oxford 1962, S. 893.
- [7] A. I. KITAIGORODSKII, «Organic Chemical Crystallography» Consultants Bureau, New York 1961, S. 7.

209. Die Konfiguration des physiologisch wirksamen 2-Chlor-9-(ω -dimethylaminopropyliden)-thioxanthens

von J. D. Dunitz, H. Eser und P. Strickler

(27. VIII. 64)

1. Einleitung. Bei der Suche nach weiteren Psychopharmaceutica zur Behandlung von endogenen Psychosen wurde 2-Chlor-9-(ω -dimethylaminopropyliden)-thioxanthen (I) synthetisiert, das in zwei Isomeren (Smp. 97–98° und Smp. 48–49°) auftritt [1]¹). Das höher schmelzende Isomer erwies sich als biologisch wesentlich aktiver und wird in der Literatur als *trans*-Isomer bezeichnet. Der grosse Abstand des Cl-Atoms von der fraglichen Doppelbindung erschwerte aber eine Abklärung der Konfigurationsverhältnisse nach den üblichen Methoden. Deshalb wurde eine röntgenographische Untersuchung des höher schmelzenden Isomeren durchgeführt.

¹⁾ Die Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis, S. 1902.